Open Firmware

Recommended Practice

Interrupt Mapping

Unapproved DRAFT

Published by the Open Firmware Working Group

This document is avoluntary-use recommended practice of the Open Firmware Working Group. The Open Firmware
Working Group is an ad hoc committee composed of individualsinterested in Open Firmware as defined by IEEE
1275-1994, related standards, and their application to various computer systems.

The Open Firmware Working Group isinvolved both in IEEE sanctioned standards activities, whose final results are
published by IEEE, and in informal recommendations such as this, which are published on the Internet at:

http://playground. sun. conf 1275

Membership in the Open Firmware Working Group is open to all interested parties. The working group meets at reg-
ular intervals at various locations. For more information send email to:

p1275-wg@i sc. sps. not. com

Revision History

OCoOoO~NOOUOITR~hWNE

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

1. Introduction

This recommended practice defines a mapping mechanism between bus-specific interrupt values,

asreported viathe" i nt er r upt s" property of the bus'schild nodes, and asystem platform’s"na-
tive" interrupt facility.

1.1. Purpose

The base Open Firmware specification (IEEE Std 1275-1994) defines a generic bus-specific prop-
erty ("i nt errupt s") that isused to report interrupt specifiers used by that bus' s devices. An
interrupt specifier usually has a component that represents a number that corresponds to an input
of an interrupt controller; it may aso supply other information about the interrupt (e.g., an indica-
tion of whether the interupt is edge or level sensitive). Each bus binding to Open Firmware must
define the format and interpretation of its" i nt er r upt s" properties.

Platforms (e.g., CHRP) containinterrupt controllers to which interrupts from devices are wired.
In some cases, the interpretation of how an interrupt specifier relates to an interrupt controller is
simple. However, many platform architectures allow somewhat aribitrary "wiring" of interrupts.
Theinterrupt specifiers(i.e., the™ i nt er r upt " property values) do not contain enough informa-

tion in and of themselvesto convey the information that an operating system needs to manage the
handling of interrupts.

This recommended practice defines an architecture that provides the additional platform-specific
information about interrupts and how they are wired.

1.2. Scope

2. References and Definitions

2.1. References

[1] IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and
Practices, published by IEEE as |EEE Std 1275-1994.

[2] PCI Local Bus Specification, Revision 2.1, published by the PCI Special Interest Group.

[3] PowerPC™ Microprocessor Common Hardwar e Reference Platform: A System Architecture,
published by Morgan Kaufmann.

[4] PowerPC™ Microprocessor Common Hardwar e Reference Platform (CHRP™) System bind-
ing to: |EEE Sd 1275-1994, published by theOpen Firmware Working Group.

2.2. Definitions

3. Theinterrupt tree model

The model presented by this recommended practice is the representation of an interrupt tree that
describes how interrupts are wired, cascaded, etc. on a platform, and the manner in which aclient
(e.g., an operating system) can use this information.

7/12/96 Unapproved DRAFT 3

OCo~NOOUOITR~hWNE

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice

The interrupt tree is represented by means of new properties, defined by this recommended prac-
tice, contained within the Open Firmware devicetree for aplatform. Note that theinterrupt treeis
represented (and searched) by properties from leaf (device) nodes "upwards' towards the root of

the interrupt tree; thisisunlike the device tree that has explicit links from the root "downwards®

towards leaf nodes.

In order to represent arbitrary platform wiring, whereinterrupts may be "distributed” amoung mul-
tiple interrupt controllers, the terminterrupt tree istechnically incorrect. In such cases, the struc-
tureis more correctly called an interrupt graph. However, since many platforms have a simpler
model, we will generically refer to the structure as atree.

Each sub-tree of the interrupt tree representsinterrupts within an interrupt domain that definesthe
format and interpretation of " i nt er r upt s properties for devices that are members of the do-
main. Since multiple busses may exist in a given platform, each of which hasits own interrupt
domain, the interrupt tree consists of multiple interrupt domains. Theroot of the interrupt tree de-
fines the platform’ sinterrupt domain.

The base document defines the value of each ™ i nt er r upt s" property entry to be an interrupt
specifier. In practice, however, this value may have to be interpreted with respect to the device's
unit address For example, most PCI deviceswill havean™i nt er r upt s" valueof 1, asrequired
by the[2]. However, thewiring of interrupts, at least for plug-in devices, is determined by the par-
ticular slot inwhich the deviceisplugged. On PCI, thedlot isimplied by the device sunit address
(which containsthe relevant devi ce# information).

Because of this general coupling of unit address and interrupt specifier, the term unit interrupt
specifier isused when discussing avaluethat consistsof thepair (unit address interrupt specifier).
For nodes that represent devices, the number of cells to represent a unit interrupt specifier isthe
sum of the" #addr ess-cel | s" and" #i nt errupt - cel | s" properties; for nodes that do
not represent devices, thereisnorelevant " #addr ess- cel | s" value, sothat the number of cells
issolely determined by the" #i nt er r upt - cel | s"value. The latter case exists due to the na-
ture of representing interrupt mapping outside the context of the normal device tree.

Each nexus in an interrupt tree represents where some interpretation and/or transformation of an
"interrupts” property value might be done. Thisinterpretation is either direct because the
nodeisthe interrupt tree’ sroot, it represents an interrupt controller, or it requires a“mapping” of
aunitinterrupt specifier inoneinterrupt domaininto aunit interrupt specifier inanother domain.
In some cases (e.g., PCI-PCI bridge), the domains are essentially the same, but some mapping
might be necessary because of wiring.

Theresult of mapping an interrupt to the top of theinterrupt tree resultsin a platform-specific val-
ue; the platform’s binding must define the interpretation of this value (e.g., source number and
sense for an Open PIC interrupt controller).

3.1. "#interrupt-cell s"property

The assumption of the base document was that the interpretation of " i nt er r upt s" values, in-
cluding their format, wastotally specified by abusbinding. However, thisrecommended practice
isdesigned to allow the traversal of the interrupt tree without such implicit knowledge. Thisisaf-
forded by means of anew property (" #i nt er r upt - cel | s") that explicitly definesthe number
of cellsrequired for the representation of a single interrupt specifier.

4 Unapproved DRAFT 712/96

OCoOoO~NOOUOITR~hWNE

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

3.2. "interrupt - parent "property

Since the interrupt tree may not match the physical bustree (which iswhat the Open Firmware de-
vicetreerepresents), anew property (" i nt er r upt - par ent ") isintroduced that can denote the
interrupt tree hierarchy from device-tree nodes upwards within the interrupt tree.

If adevice node does not specify an explicit interrupt parent (i.e., doesnot the" i nt er r upt -
par ent " property), and it is not an interrupt controller (i.e., it doesnot havean " i nt er r upt -
control | er" property), that node' sinterrupt parent is assumed to be its device tree parent.

3.3. "interrupt-mp"property

At any level intheinterrupt tree, amapping may need to take place between the child interrupt do-
main and the parent’s. Thisis represented by a new property called" i nt er r upt - map". This
property defines the mapping of unit interrupt specifiers asreported by the unit address and inter -
rupt specifiers of devices on abus (as defined by that bus's binding), or as transformed by the
"interrupt-map" property of theinterrupt child of the node containing this property, to unit
interrupt specifiers in some other interrupt domain. The" i nt er r upt - map" property can rep-
resent wiring conventions (e.g., PCI cards with on-board PCI-to-PCI bridges, or platform routing
of PCI interrupt pins) or might simply indicate a change of interrupt domain representation.

The"i nt errupt - map" property isatable, each entry of which consists of achild unit interrupt
specifier, an interrupt parent phandle and a parent unit interrupt specifier. The" i nt er r upt -
map" tableislooked up by matching aunit interrupt specifier (asmasked by the" i nt er r upt -
map- mask" defined below) against child components. When a match is found, the lookup pro-
ceeds up the interrupt tree by traversing upwards to the interrupt parent (as specified by the thein-
terrupt parent phandle component of the matching entry) with the parent unit interrupt specifier
component as the working interrupt value.

Note that since the interrupt parent of each entry may be a different interrupt tree node, with dif-
ferent valuesfor " #addr ess- cel | s"and" #i nt er rupt - cel | s", theinterrupt parent phan-
dle of each entry must be used to determine the number of cellsin the parent unit interrupt specifier
component.

34. "interrupt-mp- mask'property

When performing interrupt mapping viathe" i nt er r upt - map" property, not al of the bitsof a
unit interrupt specifier may be relevant to the lookup. For example, aPCI unit interrupt specifier
consists of 4 cells (3 for the unit addressand 1 for the interrupt specifier). However, only the de-
Vi ce# component of the unit addressisrelevant. The" i nt er r upt - map- mask" property de-
fines amask that is applied to the unit address specifier before using it to look up valuesin the
"interrupt-map"table.

Whenthe" i nt er r upt - map- mask" property is present, the device' s unit interrupt specifier
(i.e., the concatenation of adevice sunit address and interrupt specifier) is the starting point for
generating alookup value. The" i nt er r upt - map- mask" property isabit-mask that specifies
which bits are to be considered in the looking up of " i nt er r upt - map" entries (i.e., the child
component). Theunit interrupt specifier valueis masked by ANDing each of its cellswith the cor-
responding cell of the™ i nt er r upt - map- mask™ value. Theresulting valueismatched against
child valuesinthe" i nt er r upt - map" table.

7/12/96 Unapproved DRAFT 5

OCo~NOOUOITR~hWNE

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice

35 "interrupt-controll er'property

A sub-treeroot isdenoted by the presenceof an™ i nt er r upt - cont r ol | er " property. Ingen-
eral, such anode represents where some sort of processing is required to respond to an interrupt.
The programming model of this interrupt controller is determined by the " nane”,

"devi ce_type" andor " conpat i bl e" properties of the node.

Theroot of theinterrupt tree is determined when the traversal of the interrupt tree reaches an inter-
rupt controller node that does not have an explicit interrupt parent (i.e., doesnot havean" i nt er -
r upt - par ent " property).

On some platforms, the interrupts from one interrupt controller are “ cascaded” into another inter-
rupt controller higher up the interrupt tree. In these cases, the sub-tree’ sinterrupt controller node
will, itself, havean " i nt er r upt s" property that isinterpreted in the interrupt domain of itsin-
terrupt parent.

Some platforms may not have asingleinterrupt controller into which lower-level interrupt control-
lersarewired. E.g., independent interrupt controllers may report interrupts by sending interrupt
“messages’ directly to processors. Inthiscase, asingle devicetree node can till be defined asthe
root of the platform’ sinterrupt treein order to define the interrupt domain of the platform. 1.e., the
interrupt tree root does not necessarily represent a physical interrupt controller.

4. Interrupt tree parent properties

Note: interrupt controllers that are cascaded are both the parents of its child nodes and
thechild of aninterrupt controller higher up theinterrupt tree. Therefore, they will have
both parent and child properties.

The following properties are defined for interrupt nexus nodes by this recommended practice.
"#interrupt-cells” S

Standard property-name to define the number of cellsin an interrupt specifier withinanin-
terrupt domain.

prop-encoded-array:
An integer, encoded as with encode- i nt, that denotes the number of cellsre-
quired to represent an interrupt specifier in its child nodes.

"interrupt-map- mask" S

Standard property-name to define the transformation of unit interrupt specifiers of child
nodesinto valuesthat correspond to child-interrupt entriesof the" i nt er r upt - map" ta-
ble entries.

prop-encoded-array:
An array of integers, each encoded aswith encode- i nt.

The value of this property isabit-mask that is applied to the concatenation of unit address
and interrupt specifier for adevice. The number of cells of this property isthe sum of the
values of the" #addr ess-cel | s"and" #i nt err upt - cel | s"for thisinterrupt do-
main.

6 Unapproved DRAFT 712/96

OCoOoO~NOOUOITR~hWNE

Open Firmware Recommended Practice Interrupt Mapping Version 0.9
“interrupt-mp" S
Standard property-name to define interrupt specifier mappings.

prop-encoded-array:

Arbitrary number of interrupt mapping entries.
Each mapping entry consists of a 3-tuple of (child-interrupt, interrupt-parent, parent-inter-
rupt). The number of cellsfor the child-interrupt specifier is determined by the " #ad-
dress-cel I s"and "#i nterrupt - cel | s"property of thisnode. The number of
cellsfor the parent-interrupt value is determined by the" #addr ess- cel | s" and
"#interrupt-cell s"property values of this node' s interrupt-parent.

“interrupt-controller”
Standard property-name to indicate an interrupt (sub-)tree root.
prop-encoded-array.
None. The presence of this property indicates that this node represents an interrupt

controller.

The interpretation of an interrupt specifier within the interrupt domain defined by thein-
terrupt controller is defined by other properties of thisnode (e.g., its" devi ce_t ype").

5. Interrupt treechild properties
The following property is defined for children of an interrupt nexus node.

Note: interrupt controllers that are cascaded are both the parents of its child nodes and
thechild of aninterrupt controller higher up theinterrupt tree. Therefore, they will have
both parent and child properties.

"interrupt-parent” S
Standard property-name to denote the interrupt tree parent of this node.
prop-encoded-array:

Aninteger, encoded aswithencode- i nt, that isthe phandle of theinterrupt nex-
us node that is the interrupt parent of the node.

The absenceof an"i nt er r upt - par ent " property in an interrupt controller node (i.e., anode

that hasthe™ i nt er r upt - cont r ol | er " property) indicates that this node represents the plat-

form’sinterrupt treeroot. The absence of an "interrupt-parent” property in adevice node indicates
that the interrupt tree parent is the device tree parent of this node.

7/12/96 Unapproved DRAFT 7

OCo~NOOUOITR~hWNE

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice
6. Examples

6.1. PCI bus

The PCl binding definesan™ i nt er r upt s" property to consist of one cell, which encodes wheth-
er the PCI device’ sinterrupt isconnected to the PCI connector’ sl NTA#...1 NTD# pins, with values
1...4, respectively (assuming that the device is on a plug-in PCI card).

However, platforms typically wire the interrupts between connectorsin amanner that attempts to
distribute the interrupts from multiple cards across different interrupt inputsto itsinterrupt control-
ler. Anoperating system does not obtain much information by just looking at the" i nt er r upt s"
property of adevice.

The"i nt er rupt s" valueisinsufficient to be used as the child lookup valueinan"i nt er -

r upt - map" table, since the device's device number (which determines the card connector into
which the deviceis plugged) must beincluded in the mapping. So, for " pci " busnodes,an" i n-
t er rupt - map- mask" property must be used. The addition of this property allows the device
number component of a device' sunit addressto participate in the child interrupt specifier lookup
value.

The" i nt errupt - map- mask"vauefor " pci " would be (in hex):

0O0OF800 00000000 00000000 00000007
unit address mask interrupt specifier mask

The bits in the phys.hi component of the unit address mask masks off thedevi ce#field; thein-
terrupt specifier mask masks off the low-order 3 bits, which is sufficient to cover the values 1-4.

6.2. CHRP platform

This section gives an example of how atypical CHRP ([3],[4]) platform’s device tree would rep-
resent its interrupt tree. In order to understand the example, a basic introduction to the CHRP in-
terrupt controllersis presented below.

6.2.1. Open PIC interrupts

The CHRP platform defines the platforms primary interrupt controller to be the Open PIC. This
controller has anumber of interrupts, each of which isrepresented by a source number and a sense.

Each Open PIC interrupt source is described by its source number that corresponds to a register
pair for that interrupt within the Open PIC. Variousfieldswithin theregister pair alow the setting
of the interrupts priority, masking of the interrupt, etc. One important piece of information that
must be programmed for an interrupt sourceisits sense; i.e., whether the interrupt is considered
triggered by a positive edge or alow level.

Therefore, to represent interrupts within the domain of Open PIC, two cellsareused. Thefirst cell

represents the interrupt source number, while the second specifies whether the interrupt is positive
edge triggered (0) or active low level triggered (1).

6.2.2. |SA interrupt controller
In addition to the Open PIC, a CHRP platform also has a“legacy” ISA interrupt controller. This

8 Unapproved DRAFT 712/96

OCoOoO~NOOUOITR~hWNE

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

controller (basically, an 8259) is cascaded into the Open PIC. |.e., when an | SA interrupt occurs,
an Open PIC interrupt will be generated. The processing of thisinterrupt will discover that the
sourcewasfromthel SA interrupt controller, which must then be accessed to determinethe original
source of the interrupt.

The ISA binding defines the format of 1SA interrupts, which consists of two cells, where the first
istheinterrupt level (0...15) and the second cell indicates the type (e.g., positive edge).

6.2.3. CHRP platform example

The following diagram shows how the interrupt tree for a CHRP platform would look. Thisexam-
ple assumes that the Open PIC is contained withinthe" mac- i 0" chip. Itisnot important for this
exampl e to understand the details of the" mac- i 0"; rather, it isthe structure of the interrupt tree
that isbeing conveyed. The only important pieces of information about the™ open- pi ¢" device
within" mac- i 0" isthat it represents interrupts with 2 cells per interrupt (indicated by its"” #i n-
terrupt - cel | s" property value) and that it is marked as an interrupt controller (by means of
the" i nt errupt-control | er"property).

(root) 0x2000,0,0,1
i __—% 0x2800,0,0,1
"interrupt-map"

“"#address-cells"=3

i "#interrupt-cells=1
(p “interrupt-map-mask"=0xF800,0,0,7

13,1
12,1

2

mac-io

— 2\ interrupt-controller™
open-pic "#interrupt-cells"=2

16 XYZ) “interrupts”=1

17
"interrupts'=1

""#address-cells'=2
isa) "#interrupt-cells'=2
"interrupt-parent”

"interrupts'”=0,0
- - “#interrupt-cells™=2
IS&PIC) jnterrupt-parent”

"interrupt-controller™

“interrupts”=5,1

The PCI devices (mac- i o,xyz,abc) havein implicit interrupt parent that isthe " pci " host
bridge. Theinterrupt domain of PCI has interrupt specifiersthat are 1 cell each, asindicated by
the" #i nt errupt - cel | s"valueinthe" pci " node. Thenac- i 0node does not generate PCI
interrupts; ithasno"i nt errupt s" property. However, xyz and abc both generate interrupts
on | NTA#, asindicated by their " i nt er r upt s" values of 1.

;

The" pci " node containsa” i nt er r upt - map- mask" property that indicates that the lookup
of child interrupt specifiersis done by acombination of bitsfrom their unit address and interrupt
specifiers. Thenumber of cellsof the™ i nt er r upt - map mask" property is4, whichisthe sum
of its" #addr ess-cel | s"(3)and" #i nt errupt - cel | s" (1) properties.

xyz'sdevi ce#is 16, which corresponds to a phys.hi of 0x2000. The corresponding entry in

7/12/96 Unapproved DRAFT 9

OCo~NOOUOITR~hWNE

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice

the" i nt er r upt - map" table indicates that its interrupt gets mapped to 13, 1 (i.e., interrupt
source 13, activelow level) inthe™ open- pi ¢". Likewise, abc’sinterrupt is mapped by masking
itsunit addresswith OxF800, 0, 0giving0x2800, 0, Oand itsinterrupt specifier with 7 giving
acombined child lookup value of 0x2800, 0, 0, 1. The corresponding entry inthe™ i nt er -

r upt - map" table denotesthe” open- pi ¢" node asits parent with aunit interrupt specifier of
12, 1. Notethat the" open- pi ¢" nodedoesnot havea" #addr ess- cel | s" property, so that
the number of cellsfor the parent unit interrupt specifiersis2 (whichisthevaueof its" #i nt er -
rupt - cel | s" property).

If the platform wired all of the INTA#stogether, the interruptswould be shared. To represent this,
the"i nt errupt - mag' table would show that the different PCI interrupts mapped to the same
interrupt specifier value. For example, the™ i nt er r upt - nap' table above could have entries
for (0x2000, 0, 0, 1 open-pic 2, 1)and(0x2800, 0, 0,1 open-pic 2, 1)indicating
that the INTA#s for both xyz and abc are shared.

Thenodesunder the" i sa" bridge haveinterrupts encoded as specified by the |SA binding, which
statesthat " i nt er r upt s" propertiesconsist of 2 cells, wherethefirst cell istheinterrupt number
(0...15) and the second cell indicatestype (i.e., low level, rising edge, etc.); the" #i nt er r upt-
cel | s™ property of the bridge indicates the number of cells required to represent interrupts (i.e.,
2).

All of the ISA devices (with the exception of the" i sa- pi ¢, whichisaninterrupt controller) are
children of the" i sa" node which becomes the default interrupt parent, since none of its children
haveexplicit" i nt er r upt - par ent "properties. Sincean" i nt er r upt - map" property isnot
present in this node, no transformation of interrupt specifiersis made when traversing theinterrupt
tree to its parent.

The interrupt parent of the™ i sa" nodeisthe"i sa- pi ¢" interrupt controller. The presence of
the"interrupt-control | er"property inthe"i sa- pi ¢c" nodeindicates that thisisanin-
terrupt controller, thus defining an interrupt sub-tree root. Sinceithasan™i nt err upt - par -

ent " property, thisinterrupt controller is cascaded into its parent, which is the platform’s Open

PIC. The"i sa- pi c" interrupt is presented as interrupt source O (positive edge triggered) of the
" open- pi ¢, asindicated by its" i nt er r upt s" vaue.

7. Interrupt mapping algortithm

The following psuedo-code shows the steps necessary to translate an interrupt specification from
adeviceinto a platform specific value.

The psuedo-code is written at avery high level, with some liberty taken with details. The argu-
ments to the procedure are the device' s device-node pointer and itsinterrupt-specifier. Note that,
in general, separate calls to map each interrupt specifier would be required.

The code is basically alarge loop that terminates when an interrupt-controller node is found that
has no interrupt-parent.

10 Unapproved DRAFT 712/96

OCoOoO~NOOUOITR~hWNE

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

procedure map-interrupt(device-node, interrupt-specifier)

uni t-address = val ueof("reg"[0], device-node)
unit-interrupt-specifier = cat(unit-address, interrupt-specifier)
t hi s-node = devi ce-tree-parent(device-node)

begi n \ loop up tree until we reach the root

if present("interrupt-controller”, this-node)
if present("interrupt-parent”, this-node)
par ent - node = val ueof ("interrupt-parent"”, this-node)
if present("#address-cells", parent-node)
unit-address = val ueof("reg"[0], this-node)
el se
unit-address = NULL
t hen
i nterrupt-specifier = valueof("interrupts", this-node)
unit-interrupt-specifier = cat(unit-address, interrupt-specifier)
t hi s-node = parent - node
else\ this is the root node, we're done
return(unit-interrupt-specifier)
t hen

el se \ not "interrupt-controller"
if present("interrupt-nap", this-node) \ we have a napping to perform
i f present("interrupt-nap-mask", this-node)
mask = val ueof ("interrupt-mp-msk")
unit-interrupt-specifier = unit-interrupt-specifier & nask
t hen
i nit-decode-cells("interrupt-mp", this-node)
found? = fal se
begi n
chil d-specifier = decode-cells(sizeof(unit-interrupt-specifier))
par ent - node = decode-cells(1)
if present("#address-cells", parent-node)
#cel ls = val ueof ("#address-cells", parent-node)

el se
#cells =0
t hen
#cells = #cells + valueof ("#interrupt-cells", parent-node)
if child-specifier == unit-interrupt-specifier
found? = true
el se
dunmy = decode-cel I s(#cells)
t hen

until found?
interrupt-specifier = decode-cells(#cells)
i f present("#address-cells", parent-node)
uni t-address = val ueof("reg"[0], this-node)
el se
uni t-address = NULL
then
unit-interrupt-specifier = cat(unit-address, interrupt-specifier)
t hi s-node = parent-node

el se \ no "interrupt-nap" table
if present("interrupt-parent”, this-node)
thi s-node = val ueof ("interrupt-parent”, this-node)

el se \ no "interrupt-parent” property

t hi s-node = device-tree-parent(this-node)
t hen
again

7/12/96 Unapproved DRAFT 11

